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ABSTRACT

The equations derived to define a troposkien (the shape a completely
flexible cable assumes when it is spun at a constant angular velocity about
a vertical axis to which its two ends are attached) are described. The im-
plications of the solutions on the design of a vertical-axis wind turbine are
discussed for cases where gravity is neglected.
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Tension in the cable at the point of maximum deflection, see Figure 1.
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Dummy variable of integration.

Slope of the cable at point P, see Figure 1.

Mass per unit length of the cable.

Parameter in the elliptic integrals, see Equation (A 16 ).
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Rotational parameter, see Equation ( 12).



BLADE SHAPE FOR A TROPOSKIEN TYPE OF
VERTICAL-AXIS WIND TURBINE

Introduction

In 1931 the U. S. Patent Office issued a patent in

Darrieus 1 for a vertical-axis wind turbine. His patent

the name of G. J. M.

statement indicates that

each blade should “have a stream-line outline curved in the form of a skipping rope. "

In the early 1970's, the National Research Council of Canada
2, 3

independently devel-

oped the same concept of a vertical-axis wind turbine; in this concept, a perfectly

flexible blade, under the action of centrifugal forces, assumes the approximate shape

of a catenary. Hence, the major stresses in a catenary-shaped blade are tensile, i. e. ,

negligible bending stress. However, the usual definition of a catenary is the shape

assumed by a perfectly flexible cable of uniform density and cross section hanging

freely from two fixed points. The word troposkien (from the Greek: ?pol’ros, turning

and csXoLvI.oV, rope) will be used to describe the shape assumed by a perfectly flex-

ible cable of uniform density and cross section if its ends are attached to two points

on a vertical axis and it is then spun at constant angular velocity about the vertical

axis.

The purpose of this report is to develop

and to discuss the implications of the solution.

Analysis

the equations that describe a troposkien

Figure 1 presents the schematic of a perfectly flexible cable rotating at a con-

stant angular velocity u about a vertical z axis. The displacement of the cable

from the z axis is indicated by r. The origin of the r, z coordinate system has been

chosen on the z axis at a point corresponding to the maximum deflection of the cable

from the z axis. To, which is the tension in the cable at its point of maximum

horizontal displacement, is directed vertically downward. Tlie forces acting on the

length of the cable between the point of maximum horizontal displacement and the

point P are the centrifugal force C, the gravitational force G, and the two tensions

T and To.

3
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Figure 1, Schematic of a Perfectly Flexible Cable
Rotating About a Vertical Axis



The balance of forces in the horizontal direction at point P requires that

Tsin(3=C, (1)

where the centrifugal force can be written as

s

(J.

~

2
aurds,

o
(2)

and where u is the mass of the cable per unit length, and s is the length of the

cable between the point of maximum horizontal deflection ( z = o) and point P in

Figure 1.

The balance of forces in the vertical direction at point P requires that

Tcose=To+G, (3)

where the gravitational force can be written as

JG= ‘ugds (4)
o

and where g is the acceleration of gravity. If the mass per unit length is a constant,

the gravitational force per unit length is constant, while the centrifugal force per

unit length increases linearly with increasing distance from the axis of rotation.

From the ratio of Equation (1) to Equation ( 3):

tan e

Substituting Equations (2

c dr=—— ._— .
TO+G dz

and (4) into Equation (5) gives

dr= J2 Srds
Uu

o .
dz - To + ugs

The boundary conditions to be met are

r.o atz=a

Am
Hi=. at~ .(-j

A. .
UZ

(5)

(6)

/

(7)



At large rotational speeds, the cable tension To and G02 will be large in comparison

to Ogs. If the gravitational forces are relatively small, ugs may be neglected, and

the integro-differential equation describing the cable shape reduces to

s
* . 00J2.—
dz To

/
rds.

0

(8) ‘

The solution to Equation ( 8), which is developed in tie appendix, can be written as

z—=
a ~[F~:;k) - F(d;k)] , (9)

where F (#; k) denotes the elliptic integral of the first kind with parameter k defined

by

In this expression, # ‘ sin
-1

(r/b) and b is the maximum horizontal displacement.

Equation ( 10) cannot be expressed in terms of ordinary simple

F ( ~ ; k) must be taken from tables or evaluated numerically.

where

and

The parameter k is defined by

k2 =
1

22

()1+ m

‘0

/cJ=!2=
a x%

J

.

functions. Therefore,

(11)

(12)

(13)

The quantity S2 is a rotational parameter, and ~ is the ratio of the maximum horizon-

tal displacement to the maximum vertical displacement. It should be noted that the

angular velocity u and the cable tension T o always appear as the ratio U2 /To.
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Up to this point, the analysis has been expressed in terms of the three para-

meters k, fi, and 0. However, only two of these can be independent because of the

interdependence shown

If Equation ( 9 ) is

Q. and k results:

by Equation ( 11 ).

evaluated at the point z = a, the following relationship between

On eliminating Q from Equation ( 9 ) by substituting from Equation (14),

z F’(d; k) ,—. 1-=
a

()
F ~;k

( 14)

(15)

where, because the only parameter appearing explicitly on the right-hand side of

Equation ( 15) is k, the solution can be reduced to a single family of curves with the

parameter k. The elliptic integral subroutine ELLI developed by LASL4 was used

to evaluate Equation ( 15) numerically for several values of k. The results are shown

in Figure 2. In that the parameter k has no obvious physical significance, the data

presented in Figure 2 do not give much physical insight into the problem.

z

a

1.0

k=O

0.5 —

0.0 1 I I I I I 1 I 1
0.0 0.5 1.0

Figure 2. Nondimensional Cable Shape as a Function
of the Parameter k



Suppose now that, instead of specifying the parameter k, a new parameter S,

the total length of the cable, is specified. This S can be expressed as the integral

S= ’[amd’
(16)

or, as shown in the appendix,

s 2 ()
E$; k

—=—
2a

()

-1, (17)
l-k2F~; k

where E(#; k) is the elliptic integral of the second kind with parameter k. Since

the right-hand side of Equation ( 17) is a function of k only, a specification of the

nondimensional cable length S/2 a uniquely determines k. Equation ( 17) has been

evaluated numerically, and the results are shown in Figure 3.

Once k has been determined from Equation ( 17) for a given S/2a, $2can be

computed from Equation ( 14) and /3 from Equation ( 13). Figures 4 and”5 show the

variation of Q and P with k, respectively. The shape of the cable as a function of

the total cable length can now be determined by substituting these values of k, Q,

and @ into Equation ( 9 ) and solving this equation for the relationship between z and r.

Several calculated cable shapes, normalized by a, are shown in Figure 6. For com-

parison purposes, the catenary~< shape is also shown. For a short length S/2a, the

troposkien and catenary are very similar, but the difference increases with increas-

ing cable length. It can be seen that, if the cable were to assume a semicircular

shape, the nondimensional lengths S/2a would be fi/2. Figure 7 compares the tro-

poskien, catenary, and, circle, each with S/2a = 7r/2. Both the troposkien and the

catenary are different from the circular arc.

As is shown in the appendix, the cable tension ratio can be expressed as

T
To

()

.,. * $., . (18)

In this equation, the maximum value of T/T. occurs at r = o. Therefore,

(-)T
To =

max

+
‘k’ .

l-k’

(19)

*The equations

8

for the catenary are given in the appendix, Equations ( A33 ) through ( A35 ).
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By using Equation ( 17) or the data in Figure 3, the cable tension ratio can be

expressed as a function of the cable length. This relationship, which is very close

to linear, is shown in Figure 8. Because, for a given cable length S/2a, the rota-

tional parameter Q is uniquely determined by Equations ( 17) and ( 14), a given S /2a

can be used to obtain the tension To at the point of maximum deflection by rearrang-

ing Equation ( 12):

2
To=ua2~.

o
(20)

The maximum tension in the cable, which occurs at the point where the cable inter-

sects the axis of rotation, can be determined by substituting the value of To obtained

in Equation ( 2 O) into Equation ( 19), so that

T
max ‘To(l’%).

(21)

In dimensionless coordinates, the area under the troposkien curve is given

by

.&=@d($) .

From Equation (15 ),

A
1

1
—=
ab

o

@V#;k)

()F. ;;k
()r‘E

Changing the integration variable from (;) to 4s Equation (23 ) can be written as

(22)

(23)

(24)

The area under one quadrant of the

the blades of a wind turbine; hence,

troposkien is one-fourth of the area swept by

the swept area can be computed by

As

!

?7/2
—.

[1

Cos$i 1- F(d;k) dd
4ab o

()

.
F ~;k

(25)

Equation (25 ) was integrated numerically, and the results are shown in Figure 9.
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Figure 8. Tension Ratio as a Function of Cable Length
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Figure 9. Dimensionless Swept Area as a Function
of Dimensionless Cable Length

Observations

From the foregoing calculations several observations have been made.

For short cables (k small), the rotational parameter O approaches a maximum

value of n/2. Figures 4 and 5 can be combined to give a plot of S/2a versus b/a as

shown in Figure 10. This point, S/2a = 1, corresponds to the physically uninterest-

ing case in which the cable lies on the axis of rotation.

The curves in Figure 6 also suggest that there may be an optimum blade length

for a vertical-axis wind turbine. The driving torque on the blades will be the product

of a chordwise force and a moment arm. The chordwise force is greatest on the ver-

tical part of the blades, and the shorter blades have the greatest portion of the blade

that is vertical. However, the shorter blades also have the smaller moment arm.

Therefore, it is conceivable that based on force considerations, there is an optimum

blade length. This problem is presently under investivation.

16



For a given cable length, which implies a given Q, fixed pivot points, and a

constant mass per unit length, the tension To varies directly as the square of the

angular velocity w. From Figure 10 it can be seen that increasing the cable length

causes a decrease in the rotational parameter Q which, for a given U, a, and u, in

turn causes an increase in To according to Equation (2 O).

To increases with increasing length S/2a.

If the nondimensional cable length S/2a is specified,

Under these conditions,

the cable shape is uniquely

determined and is independent of the angular velocity w. Also, the maximum cable

tension occurs at the point where the cable is attached to the rotating shaft, and all

tensions in the cable increase as the square of the angular velocity.

It should be emphasized that the above analysis and conclusions assume that

gravitational forces are negligible. The case including gravity is being examined.

n
0.0 0,5 1.0 1.5+ 2.0
4 I I I 1

I
J I 1 I I # I 1 I I I I I I

S/aa

/J=b/a ‘

Figure 10. Variation of Cable Length with Maximum Displacement
Parameter and Rotational Parameter
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APPENDIX

Referring to Figure 1, the integro-differential equation describing the cable

shape if gravity is ignored is

s

g . aid2.—
dz To

/
r ds,

o

subject to the boundary conditions

g=oatz

dz
=0,

r=o atz’a.

The differential arc length ds is related to the cable slope by

ds=~-dz.

On substituting ds from Equation (A3 ) into Equation (A 1),

It is convenient to normalize all lengths by a. To do this, let

From these definitions, Equation (A4) can be written as

where

(Al)

(A3)

(A4)

(A5)

(A6)

c?’= T22.au a

o

In order to simplify the notation in what follows,

dropped with the understanding that r and z have

(A7)

the primes on rt and Zf will be

both been normalized by a. In
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this notation, Equation ( A6 ) and tie boundary conditions, Equation ( A2 ), are

$..~2~zr~-dz

o

1

(A8)
dr—=
dz 0

at ‘=0,

r=o at ‘=1. /

The integro-differential equation in Equation ( A8 ) can be converted to a differential

equation by differentiation:

d2 r—= - Q2r
dz2

This equation can be rearranged

differentials:

so that both sides of the equation are exact

[H]
1/2

d ~+&2=f12d2
z

——
dz ()2dzr”

Integrating Equation (A 10) and applying the boundary conditions at z = o, and

setting /3 = ~ ,

dr
()

Solving this equation for the appropriate ~ ,

L

($-1,(*)-1,
[/2

.

(A9)

(A1O)

(All)

(A12)

In order to put this equation into a form which can be solved in terms of standard

functions, let a new parameter k and a new variable t be defined so that

(A13)

Then Equation (A12 ) transforms to

20



dt= +1 - t’) (1- k’t’)]’i’ .dz - ~-k’

Integrating Equation ( A14),

Alzdz=-/:[6-t’)(:-k’t’)1’”“

(A14)

(A15)

The right -hand side of this equation, which is one form of an elliptic integral, can

be converted to another form which is more convenient here by letting

t.sin#=~. (A16)

The solution to this transformed equation is

(A17)

where F (#; k) is the elliptical integral of the first kind defined by

= 1 has not been used. At thisUp to this point, the boundary condition at z

point, ~ ‘ O; therefore, Equation (A17) reduces to the constraint equation,

(A18)

~= ~bk’ F(:;k) . (A19)

The normalized total cable length, S/2a, is given by

(A20)

Substituting from Equation (Al 1) into Equation (A2 O) gives

&=~[~~($-lj]dz.

The integration of the constant terms in Equation(A21 ) is

the integration of the r’ term takes a little manipulation.

placing r/P by sin # from Equation (A16 ). The integration variable is then changed

(A21)

straightforward; however,

This is done by first re -

21



from z to ~, where d$

Q by Equation (A19 ).

I-1

is obtained by differentiating Equation ( A 17 ) and eliminating

The result of these operations is

.2 f“ sin2 d dd

/ o ; ‘z = -.I.,2 .(:;,)/=

J_--)E ~;k
.—

[1
ki’ -(n)’F ~;k

where E(4; k) is the elliptic integral of the second kind defined by

Substituting Equations ( A22 ) and (A13 ) into Equation (A21) yields

s 2 l-l
E:; k

..—
2a

()

-1.
l-k2F; ;k

If S/2a is specified, then Equation (A24) can be iteratively solved for the

parameter k. This has been done for several values of S/2a where Newtonls

method was found to work well in determining k. The procedure is as follows.

Define a function G(k) from Equation ( A24) so that

(A22)

‘(k)=‘(f’k)-H:+1)(1-k2)‘(:’k)

(A23)

(A24)

(A25)

and search for the value of k that forces G(k) to zero. The iteration sequence is

k ‘k -
‘(kn)

[()]

(A26)
n+l ,

n
-&Gk

,n

where

— -4+ (%+1,‘Fkk)dG(k) _
dk

-% ’1)(1- k2)*
(A27)
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‘F(~’k) = - ;~(;;’) -*2 +“)1‘ (A28)

(A29)

In the calculation reported in this paper, the elliptic integrals were evaluated

by means of the ELLI program obtained from LASL.
4

The iteration sequence given

by Equation ( A26 ) generally converged in 6 to 8 iterations. The time required for

the evaluation of E (#; k) or F (#; k) on the CDC 6600 was approximately 0.7 milli-

second.

The one variable in the problem which has not yet been determined by the

analysis is the tension T in the cable. This is easily obtained by noting in the body

of the paper that, if Equations ( 1) and (3) are squared and added,

T2= (TO+G)2 . (A30)

If the gravitational forces are neglected and dr/dz is substituted from Equation(5),

This can be put in terms of the parameters of the problem by substituting from

Equation (Al 1) into Equation (A3 1):

&=l ()(22/32r2 ~-— —-
To 2

P2 “

(A31)

(A32)

For the sake of completeness, the equation for the catenary is also presented.

F rc)m any standard mechanics text,

r = $ (cosh y - cosh yZ) , (A33)

where

7=p (A34)
o

It should be noted that both r and z have been normalized by a. The length constraint

is given by

s sinh y—=
2a 7

(A35)
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